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Abstract 
 
Microsimulation over survey datasets is the one of the most widely used 
methods for analysing and predicting the impact of government policy. 
However, the accuracy of these models is often limited by the quality of the 
survey data. In this paper, we present a novel approach to improving the 
accuracy of survey data by using machine learning in three ways: (1) 
integrating administrative data with quantile regression forests to counter 
measurement error, (2) reweighting with gradient descent to counter sampling 
error, and (3) iterating based on accuracy over holdout sets. We apply this 
approach to the UK's Family Resources Survey, integrating the Survey of 
Personal Incomes, and find that it outperforms other methods currently in 
use in tax-benefit microsimulation, both in predicting characteristics of 
individual households and in simultaneously approximating hundreds of 
administrative aggregates. 
 

Introduction 
 
Governments across the world redistribute trillions of dollars every year 
through tax and benefit programs. On average, developed countries collect 
around a third of their gross domestic product in taxes and distribute around 
a third of tax revenues as cash benefits. 12 Given the direct and indirect effects 
of these programs on households, tax-benefit policy represents one of the 
largest single contributors to the financial situation of billions of people.  

 
1 https://www.oecd.org/coronavirus/en/data-insights/tax-to-gdp-ratios  
2 https://www.oecd.org/els/soc/OECD2020-Social-Expenditure-SOCX-Update.pdf  
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As policymakers legislate these programs, they and the public rely on 
accurate forecasts of their budgetary and distributional impacts, a task often 
carried out by tax-benefit microsimulation models. However, datasets used in 
these models deviate from administrative aggregates,3 due largely to 
measurement errors and survey response rates that are worsening over time.4 
Inaccuracies in data cause inaccuracy in forecasts, potentially resulting in 
policies that fail to achieve the designers’ aims. 
 
Most producers of household surveys do not adjust microdata to attempt to 
counter this,5 but where statistical agencies do, the remedies tend to be 
narrow. For example, in correcting for the under-representation of high 
incomes, some analysts match the top income percentiles of a household 
survey to percentiles from administrative tax datasets.6 This can achieve exact 
parity between the two datasets on this specific target metric, but risks 
distorting the data on other dimensions. 
 
The field of machine learning includes algorithms to avoid such overfitting. 
For instance, researchers often train on reserve a subset of data, known as the 
validation set, to predict over evaluate model accuracy has emerged as a 
powerful tool for data transformation tasks, including synthetic data 
generation, across many social science subfields. However, the field of tax-
benefit microsimulation has been largely untouched by it in the decades that 
it has been the standard. Additionally, the field of machine learning has a 
wealth of prior research into the problem of overfitting- where a model 
trained to perform a specific task over-specialises to the data used to train it 
and performs worse on generalised tasks. It could be argued that many of the 
current methods for adjusting survey data show signs of overfitting- 
household weights (akin to model parameters) are often optimised to hit 
demographic statistics (the training data) exactly and perform poorly when 
used to reproduce financial statistics (unseen validation data). 
 
This paper aims to address this gap by proposing a novel approach to 
improving the accuracy of survey data by using machine learning to counter 
both sampling and measurement errors. Specifically, we address sampling 
error by adjusting survey weights with gradient descent (an optimisation 
technique underpinning deep learning), and we address measurement error 
by integrating information from tax records with quantile regression forests (a 
machine learning prediction model). We evaluate this approach on the UK's 
Family Resources Survey (FRS) in combination with other datasets. 
Benchmarking our method against others currently applied to the FRS in 
microsimulation models, we find sizable accuracy improvements. 

 
3 https://www.iser.essex.ac.uk/research/publications/working-papers/understanding-
society/2020-01  
4 https://www.aeaweb.org/articles/pdf/doi/10.1257/jep.29.4.199  
5 https://onlinelibrary.wiley.com/doi/full/10.1111/1475-5890.12158  
6 
https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/compendium/economi
creview/february2020/topincomeadjustmentineffectsoftaxesandbenefitsdatamethodology  
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We have structured this paper as follows: Background sets out the related 
research on survey inaccuracy and its causes, current applied methods for 
improving survey performance in microsimulation models, and relevant 
research in the machine learning field for solving tasks of this nature. 
Methodology specifies the end-to-end pipeline for improving household 
surveys tested in this paper. Results assesses performance as compared to the 
current FRS on several tasks typical of tax-benefit microsimulation models. 
Conclusions summarises the main findings from these experiments and 
discusses their applicability to wider policy impact assessment processes. 

Background 
 
Over the last few decades in which microsimulation has been used for tax-
benefit policy analysis, the accuracy of household surveys, and methods for 
improving it, have been highly scrutinised. 
 
Household surveys collect observations of demographic or financial 
properties of residents, designed to produce statistics representative of the 
population for a given geography. To create a link between the survey 
observations and the population, each household is assigned a survey weight 
interpretable as the number of households in the population that a given 
record represents. Weights are assigned by one of multiple methods, using 
information such as the likelihood of selection in the survey for a given 
household, or calibration for the survey to fit demographic totals when 
weights are applied.  

Tax-benefit microsimulation 
 
Analysts within and outside government routinely use microsimulation to 
predict impact of policy reforms. Prominent applications include the UK 
Treasury’s distributional analyses of government budgets,7 fiscal and 
distributional analyses of government policy reforms by research and media 
organisations outside government.8 9 
 
Tax-benefit microsimulation models, or microsimulators, have two 
components: a rules engine and a microdata set. The rules engine calculates 
taxes and benefits for a household, based on characteristics such as 
demographics, household structure, income, assets, and expenses, as 
determined by law. Microsimulators then run this rules engine over each 
household in a representative microdata set, such as a survey, a sample of 
administrative records, a complete administrative dataset, or a combination 
of these. Except in some cases involving complete administrative data, these 

 
7 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat
a/file/1142917/FINAL_Impact_on_households_-_SB23.pdf  
8 https://ifs.org.uk/publications/analysis-scottish-tax-and-benefit-reforms  
9 https://www.nytimes.com/interactive/2017/12/17/upshot/tax-calculator.html  
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microdata sources include weights for each household used to compute 
aggregates. 
 
[add diagram of tax-benefit microsimulation] 
 

Datasets used in microsimulation 
 
Household surveys 
 
In the United Kingdom (on which this paper will test its proposed survey 
improvement methods), one of the most comprehensive household surveys is 
the FRS. This survey is collected annually by the Department for Work and 
Pensions under its responsibility to produce poverty and inequality statistics 
(Households Below Average Income) and includes approximately 20,000 
households each year. Estimates for population-level features (such as the 
median income) can be derived using individual weights for household 
records which indicate how many UK households each respondent is 
representative of. These weights are calibrated to hit population totals and 
other demographic statistics, and not financial statistics. The types of errors 
common across household survey in general are similarly observable in the 
FRS.10 
 
Household survey weight genera3on 
 
Survey microdata weights enable aggregation to national or subnational 
statistical estimates. Surveys usually initialise “design weights” according to a 
household’s selection probability, then calibrate weights to administrative 
demographic statistics using numerical optimisation. 
 
The UK assigns FRS design weights from the equal probability of each 
household being selected, adjusting only for multiple households at the same 
address.11 They then calibrate weights to age-sex-region population cells, as 
well as family and household population sizes by region.12 
 
Other countries calibrate survey weights to other statistics. For instance, the 
United States calibrates the Current Population Survey to race and ethnicity-
based population totals, as well as state-level populations.13 Australia’s Bureau 
of Statistics calibrates its Survey of Income and Housing to state populations 

 
10 https://www.gov.uk/government/statistics/family-resources-survey-financial-year-2020-to-
2021/family-resources-survey-background-information-and-methodology  
11 https://assets.publishing.service.gov.uk/media/5a7dddcc40f0b65d88634e32/initial-review-
family-resources-survey-weighting-scheme.pdf  
12 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat
a/file/321820/initial-review-family-resources-survey-weighting-scheme.pdf  
13 https://www.census.gov/programs-surveys/cps/technical-
documentation/methodology/weighting.html  
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by age and sex, as well as labour force category.14 Some of these procedures 
also penalise deviations from design weights. However, at the time of writing, 
none calibrate against financial statistics such as market incomes or tax-
benefit aggregates. 
 
Some NGOs have revised government survey weights to shrink deviations 
against administrative statistics. In the US, the Policy Simulation Library, a 
group of economists collaborating on open-source models, reweight both the 
Current Population Survey and Internal Revenue Service Public Use File 
using a constrained optimisation technique that targets aggregates such as 
total income and tax filer counts.  
 

Inaccuracy in household surveys 
 
Nationally representative household surveys provide the necessary level of 
detail on respondents to simulate most taxes and benefits and aggregate up to 
the national level. Yet concerns remain about their accuracy, particularly 
when used for tax-benefit microsimulation. For example, McKay et al find that 
the FRS underestimates participation in disability- and care-related benefits, 
compared to administrative sources by between 13 and 33 percent.15 
Conversely in the United States, Cantor et al find the Current Population 
Survey overestimates healthcare subsidy enrolment by as much as 250 to 300 
percent.16  
 
These inaccuracies can be attributed to two sources: 

1. Measurement error arising respondents answering questions 
inaccurately, and  

2. Sampling error where the surveyed households misrepresent the wider 
population (given the weights). 

 
Researchers have applied various methods to establish reasons and 
magnitudes of survey inaccuracies, often connecting them to both 
measurement and sampling errors. 
 
Perhaps the most prominent debate these factors tie to is inequality, 
especially the extent of concentration of income and wealth at the top. 
Famously, Piketty, Saez, and Zucman have found that the share held by the 
top is high and growing,17 while Auten and Splinter find lower, more stable 
inequality.18 The ‘missing rich’ problem contributes to this uncertainty, where 
high-wealth households are under-sampled or have financial variables under-

 
14 https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/6553.0~2017-
18~Main%20Features~Weights~25  
15 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat
a/file/222871/WP110.pdf  
16 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1955284/  
17 https://www.nber.org/system/files/working_papers/w27922/w27922.pdf  
18 https://davidsplinter.com/AutenSplinter-Tax_Data_and_Inequality.pdf  
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reported in surveys.19 20 Lustig primarily attributes this to the low probability 
of sampling ultra-rich households due to their rarity. While the FRS does not 
capture wealth, this issue affects its questions on capital income, which has 
declined compared to administrative data from both under-coverage and 
under-reporting.21 The UK’s Wealth and Assets Survey, which does capture 
wealth properties of surveyed households, is similarly missing around £800 
billion held by the richest households.22 
 
Other clues also point to systematic under-reporting in certain categories. 
[Authors] found that UK households with self-employment income reported 
lower total income than households with employment income and similar 
consumption. 23 Assuming a consistent link between consumption and total 
income, this suggests that households under-report self-employment, relative 
to employment income. Applications of this method to household surveys 
across Europe have found similar under-reporting, suggesting between 10% 
and 40% of self-employment income is uncaptured.24 
 
Individual linking confirms measurement errors in surveys. McKay et al 
linked FRS households to administrative records in the Department of Work 
and Pensions, finding that survey accuracy varied considerably by benefit.25  
96% of linkable respondents who reported receiving State Pension could be 
verified in administrative records, while only 38% of those who reported 
receiving  Severe Disablement Allowance could be verified. The authors 
speculated that the reasons for inaccuracies could also vary by benefit or 
respondent characteristics, with confusion around survey questions 
potentially increasing for elderly populations and people with disabilities. 
 
Administrative data provides useful benchmarks for surveys because it does 
not suffer from sampling errors, and either suffers less or not at all from 
measurement errors—benefit data is authoritative, and while tax evasion 
occurs, those who underreport income in tax settings plausibly do so in 
surveys as well. Yet administrative data has its own limitations, especially in 
its universe: tax records exclude those with incomes too low to owe tax, while 
benefit records exclude nonparticipants (including those who may be 
eligible). Additionally, administrative data often excludes information not 
needed for the administrative purpose it serves, such as tax records excluding 
transfer payments. To the extent that administrative data can provide more 
truth in certain corners, its use for tax-benefit microsimulation, which 
intends to capture the full population, requires tying that truth back to 
surveys with similarly universal (or at least representative) scope. 
 

 
19 https://www.oecd-ilibrary.org/sites/9789264307278-5-
en/index.html?itemId=/content/component/9789264307278-5-en  
20 https://www.aeaweb.org/articles?id=10.1257/jel.49.1.3  
21 http://eprints.lse.ac.uk/108900/1/Ooms2021_Article_CorrectingTheUnderestimationOf.pdf  
22 https://eprints.lse.ac.uk/112698/1/1475_5890.12286.pdf  
23 https://www.sciencedirect.com/science/article/abs/pii/0047272789900522?via%3Dihub  
24 https://link.springer.com/article/10.1007/s10797-019-09562-9  
25 https://www.gov.uk/government/publications/family-resources-survey-data-linking-wp110  
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Survey improvement methods 
 
Various methods have been developed to attempt to counter the issues of 
survey inaccuracy over recent decades. These methods largely can be 
categorised into two groups: reweighting-based methods (that adjust survey 
weights to alter the properties of the aggregated dataset) and imputation-
based methods (that change the values of the survey respondents’ answers to 
questions). 
 
In the UK, the Department for Work and Pensions (the government body 
responsible for the FRS) developed a process aimed at countering the under-
coverage of high incomes within the FRS, called the ‘SPI adjustment’ (also 
referred to as ‘percentile adjustment’ in the generalised form). This 
adjustment essentially corrects the distribution of total (gross) income within 
the FRS to match the equivalent population within the Survey of Personal 
Incomes (a sample of HMRC’s administrative tax dataset). Examined by 
Burkhauser et al, this method is straightforward: identify high-income 
individuals (with income above a threshold) for adjustment, replace incomes 
with equivalent SPI percentiles, and recalibrate weights, including a penalty 
for the total number of high-income individuals in addition to the 
demographic targets (separately for pensioners and non-pensioners).26  
 
Burkhauser et al, although noting that this approach is successful at its core 
purpose and that no other country outside the UK employs such a method, 
raise several issues with this approach: firstly, it imputes total income values, 
rather than the components of total income (which tax-benefit 
microsimulation requires to simulate policy impacts). The parameters for the 
method are also arbitrary: applying to the top half-percent of the income 
distribution, and separating pensioners and non-pensioners. Additionally, 
SPI data is usually released at least a year after the FRS microdata for the 
same time period, which means that SPI data need to be adjusted for the 
relevant data lag (for example, the 2021-21 FRS would need to be adjusted 
using the 2019-20 SPI). The SPI also is collected over a different time period 
than the closest FRS survey, describing the April-March period rather than 
the October-Sept that the FRS covers. This part-year gap means the surveys 
need some adjustment in order to reconcile them. 
 
The issue of income decomposition remained largely untackled until Ooms et 
al attempted to improve the reporting of a specific component of gross 
income which is more severely under-reported in the FRS than others: capital 
income.27 They first establish that income under-reporting is mostly due to 
this particular category by comparing individual income sources between the 
FRS and SPI, finding that the aggregates of non-capital income are around 
100% of the totals for the SPI, while capital income is only around 40% as 
represented. The authors present a novel observation about the instances 
where capital income is under-reported: the capital share of income in 

 
26 https://onlinelibrary.wiley.com/doi/full/10.1111/1475-5890.12158#fisc12158-bib-0013  
27 https://doi.org/10.1007/s11205-021-02644-4  
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individuals is far less represented in the FRS than in the SPI (specifically, the 
number of individuals with a h̀igh capital share'), rather than simply a lack of 
high-capital-income individuals.  
 
They introduce a new method to correct for this under-capture: adjust the 
weights of high-capital-share individuals to match the totals in SPI data, 
finding that the new method is largely successful at correcting for under-
capture of capital income, and increases the Gini coefficient of FRS data by 
between 2 and 5 percentage points (applying the methodology to historical 
FRS data releases). However, they do not measure the changes to how well the 
FRS ranks against other aspects of the SPI. 
 

Machine learning 
 
Optimisation methods play a key role underpinning many of the approaches 
in improving survey microdata, particularly in reweighting. Household survey 
weights are largely processed by applying numerical optimisation algorithms 
penalised by deviations from demographic statistical targets. Linear 
programming methods are used to determine the optimal weights for the 
Family Resources Survey, according to limits on how far apart the FRS 
aggregates can be from national and regional population estimates.28 Multiple 
U.S. federal tax models apply a linear programming algorithm to solve for 
weight adjustments satisfying a combination of tax statistic deviation 
constraints, and weight adjustment magnitude limits.29 30 
 
There are several reasons why machine learning techniques are well-suited to 
the task of survey imputation. The most fundamental justification is in its 
context-agnostic nature: machine learning approaches do not require 
assumptions specific to the field they are applied in, unlike the current 
approaches to survey accuracy improvement (for example, percentile 
adjustment which explicitly partitions households into ’̀rich’ and ‘non-rich’ 
using arguably arbitrary definitions). In other domains, for example image 
classification, a move away from prescriptive methods towards loss function 
minimisation has seen substantially improved accuracy and robustness.31 
 
Gradient descent, a technique for finding parameters which minimise a loss 
function, iteratively updates the parameters in the direction of the steepest 
negative gradient.32 This is a highly common technique in machine learning, 
and is used in a variety of contexts, most notably as the foundation for 
training artificial neural networks. It relies on no domain-specific 
assumptions other than those present in the definition of the loss function, 

 
28 https://www.gov.uk/government/publications/initial-review-of-the-family-resources-
survey-weighting-scheme  
29 https://www.taxpolicycenter.org/resources/brief-description-tax-model  
30 https://github.com/pslmodels/taxdata  
31 
https://www.researchgate.net/publication/209804567_A_Survey_of_Image_Classification_Met
hods_and_Techniques_for_Improving_Classification_Performance  
32 https://ieeexplore.ieee.org/document/363438  
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enabling it to be applied to a wide range of problems. Several variations of 
gradient descent have emerged over the years which achieve more efficient 
training procedures: stochastic gradient descent steps in the direction of an 
estimate of the gradient using individual training examples, rather than 
loading the full dataset.33 Mini-batch gradient descent represents a 
compromise between batch (full-dataset) and stochastic gradient descent, by 
iterating parameters using fixed-size subsets of the training data.34 
 
As well as gradient calculation methods, optimisation algorithms have 
revealed significant accuracy and efficiency improvements by defining 
behaviours for hyper-parameters such as the learning rate (the velocity at 
which parameters follow the gradient). These include Adam,35 AdaGrad,36 and 
the (unpublished) RMSProp optimiser. Gradient descent could feasibly be 
applied to survey accuracy problems, since it requires only a loss function 
that is differentiable with respect to the parameters being optimised. In the 
context of survey accuracy, a loss function could be defined as the squared 
errors of individual aggregate statistics between official sources, and a survey, 
which would be continuously differentiable over the weights of individual 
household records. 
 
Relevant to the problem of countering measurement error are machine 
learning methods which generate new realistic values given context. QRF 
models are a type of ensemble learning technique, which combine the 
predictions of multiple decision trees to produce a more accurate prediction 
than any individual tree.3738 The decision trees are trained on a subset of the 
training data, and the predictions of each tree are combined using a voting 
system. Although its introduction is far less recent than more modern 
innovations in the field of neural networks (for example, artificial neural 
network variants39 or transformers40) QRF models have shown consistently 
high accuracy across a wide range of domains, remaining competitive with 
the most recent techniques. This type of model has been applied (to a limited 
extent) in the context of policy analysis and have shown superior 
performance in prediction tasks to logit and other model types.41 
 
There are several reasons why QRF models might outperform neural networks 
in predicting survey microdata values from other attributes (for example, 

 
33 https://proceedings.mlr.press/v108/wen20a.html  
34 https://ieeexplore.ieee.org/document/8264077  
35 http://arxiv.org/abs/1412.6980  
36 http://jmlr.org/papers/v12/duchi11a.html  
37 https://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf  
38 https://doi.org/10.1023/A:1010933404324  
39 
https://www.researchgate.net/publication/314457741_A_Survey_on_Various_Applications_of_
Artificial_Neural_Networks_in_Selected_Fields_of_Healthcare  
40 https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf  
41 
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2408~aa6b05aed7.en.pdf?9551c7c6e8e8fd
bd35e5512b5afcf097  
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predicting employment income from demographic variables), but the most 
natural reason is that tax-benefit law, which heavily influences financial 
decisions, is more similar in structure to a QRF than a neural network. For 
example, in Dowd et al found that capital gains variables are ùnnaturally' 
distributed in order to respond to incentives set by particular tax law 
parameters.42 Methods used currently in surveys such as percentile 
adjustment often use ‘matching’, in which a record in a survey has its value 
replaced with the closest record in another according to a specific criteria (for 
example, in the SPI adjustment, records within the same percentile group are 
replaced with the exact same mean income value as exists in the SPI). This 
removes heterogeneity, which may have adverse effects when used later in a 
microsimulation model. 

Methodology 
 
This section presents a new proposed integrated pipeline of methods to 
enhance survey microdata. The main novel additions in this method are the 
use of a balanced loss function (a set of statistical targets that does not 
exclude financial statistics, and with weights similar to the target uses of the 
survey microdata in tax-benefit microsimulation models) with gradient 
descent-powered reweighting to correct sampling error, and the combination 
of that method with QRF-based imputation models to correct measurement 
error.  
 

Balanced loss 
 
The loss function is the function that is minimised by the optimisation 
algorithm. In the context of survey imputation, the loss function is the 
difference between the survey aggregate statistics and the official aggregate 
statistics. The loss function is defined as: 
 

L(S) =&L!(S)
!∈#

 

 
where L!(S) is the loss function for a particular aggregate statistic c, 𝐶 is the 
set of all aggregate statistics and S represents a given household survey (a 
collection of relational databases). The loss function for a particular aggregate 
statistic 𝑐 is defined as: 
 

L!(S)  =  w  ,
∑ (X$ ⋅  max(W$,  0))%
$

y   −  19
&

 

 
where 𝑋' is the value (of a particular variable) of the 𝑖 −th household record, 
𝑊' is the weight of the 𝑖 −th household record, 𝑦 is the official aggregate 
statistic for 𝑐, and 𝑤 is a weighting factor for the loss function. The weighting 

 
42 https://doi.org/10.17310/ntj.2019.2.02  
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factor 𝑤 is used to prioritise certain aggregate statistics over others (for 
example, budgetary impact size is used to comparatively weight different 
financial aggregate statistics). The loss function is also hierarchical, in that 
each loss category contains a weighted sum of other (normalised) loss 
functions. For example, the loss function for demographic performance might 
contain subcategories measuring performance over household population 
targets as well as individual population targets. Note that the weight 𝑊' is 
constrained to be non-negative, since negative weights do not have a 
meaningful interpretation in the context of survey imputation. 
 
There remains an issue in how to constrain the relative sizes of different loss 
values. For example, we might have many more detailed statistics over which 
we can evaluate the survey in its representation of Income Tax (revenues by 
income band, taxpayer counts) than we do for Child Benefit (only aggregate 
revenue and total claimants). Naively summing the relative error comparisons 
for each category would give Income Tax targeting a much higher weight in 
the optimisation process purely because of our access to statistics (which is 
no indication of a program's importance). Simply dividing by the number of 
comparisons would be inaccurate too, given some of those comparisons 
might be more important than others. Therefore instead, a more neutral 
assumption is to normalise each loss category by dividing by its initial value: 
 

L(S) = ∑ )!(+)!∈#
)(+$)

  
 
The question of how to determine the weighting factor for each loss function 
is also arbitrary, but the most neutral assertion could be to use the aggregate 
financial size of a program, or the size of the population concerned. For 
example, if we have one loss category measuring how well the survey 
reproduces Income Tax statistics and another measuring Child Benefit, and if 
Income Tax raises twenty times the total Child Benefit expenditures, we could 
reasonably consider that the Income Tax loss category is approximately 
twenty times more important than the Child Benefit loss category. 
 
This paper benchmarks the performance of the survey accuracy improvement 
pipeline by focussing on UK survey data, which requires an implementation 
of the loss function for the UK context. The UK loss function is defined using 
the following categories: 
 

1. Demographics 
a. Households 

i. Region-Council Tax Band intersections* 
ii. Region-tenure type intersections* 

b. Populations 
i. Age-sex-region intersections* 

2. Programs 
a. Universal Credit 
b. Child Benefit 
c. Child Tax Credit 
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d. Working Tax Credit 
e. Pension Credit 
f. Income Support 
g. State Pension 
h. Housing Benefit 
i. Income-based Employment Support Allowance 
j. Income-based Jobseeker’s Allowance 
k. Council Tax 
l. National Insurance 
m. Employment income 
n. Self-employment profit 
o. Private pension income 
p. Savings interest income 
q. Property income 
r. Dividend income 
s. Income Tax 

i. Taxpayers by UK nation 
ii. Tax liability by 10 income bands 

 
Loss categories marked with an asterisk (*) contain statistics that are also used 
to determine the original FRS survey weights. Categories within the Programs 
include aggregate financial size and non-zero counts by UK nation, weighted 
by the aggregate financial size of the program. For example, the program loss 
category is approximately defined by: 
 

L-./0.123(S) = 45 × 104L56$78.319#.8:$;(S)	
																												+11 × 104L#<$9:=868>$;(𝑆) 

+	. . .	
																											+200 × 104L?6!/28@1A(S) 

 
This is necessary, since loss categories in themselves are normalised and 
expressed as a percentage of the first loss value. 
 
A given survey 𝑆 is itself a set of variables X$,C (where 𝑖 is the household record 
and 𝑗 is the variable), as well as household weights W$.43 We can therefore split 
up the loss function to be a function of the variables and weights separately 
(and implementing this split is achievable in the underlying algorithm code) 
as L(S)  =  L(X,  W). Our loss minimisation task therefore becomes finding the 
solution to the equation: 
 

∂L(X,W)
∂W   =  0 

 
The loss function for a specific household survey will be a large set of 
composite functions incorporating hundreds of individual targets, but the 
gradient function can be analytically calculated using automatic 

 
43 Although most household surveys also include personal and family weights, only the 
household weights are optimised in this project. 
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differentiation packages such as PyTorch.44 Under the gradient descent 
algorithm,45 the weights are iteratively updated in the direction of the steepest 
negative gradient, until the loss function is minimised. 
 

Imputation 
 
There are several reasons why reweighting alone will likely not be sufficient 
to eliminate certain types of error in the survey. For example, suppose that 
one of the income tax targets involves the revenue from certain high-income 
tax filers. A survey which does not include any instances of these filers will 
categorically be unable to make any progress towards this target. This case 
does occur frequently in practice: the highest taxable income in the Family 
Resources Survey (2020-21) is less than £1m, but HMRC reports aggregate tax 
revenues from filers with incomes over this level in the order of £1bn. 
 
This problem manifests as a global minimum floor in the loss landscape over 
the space of the original survey weights, below which no optimisation 
improvement can reach. To circumnavigate this barrier, we must add new 
records and weights to the parameters optimised by the gradient descent 
algorithm. 
 
Synthesising new records to add to the existing survey brings risks: we could 
decrease the accuracy of the survey by adding new records which are 
unrealistic. This is not a concern: it can be avoided entirely by adding new 
records with weight values set to zero, since this does not actually change the 
result of anything produced with the survey, and instead just provides the 
optimisation algorithm with more parameters to change. However, while 
synthesising implausible records cannot harm the survey, it is likely that the 
more plausible the new record, the better it can aid the optimisation routine. 
 
There are a variety of machine learning-based methods for synthesising new 
data points from a learned distribution. Ghenis benchmarked several of these 
methods against each other and found that a QRF model-based approach 
minimised quantile loss, an indicator of how well the distribution of generated 
values aligns with the prior distribution, the most.46 Preserving heterogeneity 
in distributions is important here: microsimulation modelling's core strength 
comes from its ability to simulate independent outcomes across a highly 
diverse sample of the population. The appendix of this paper contains details 
of a benchmarking experiment carried out in order to determine that QRF-
based imputation does not deteriorate the accuracy of covariation between 
fields, finding that it does not. 
 

 
44 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf  
45 
https://www.researchgate.net/publication/314457741_A_Survey_on_Various_Applications_of_
Artificial_Neural_Networks_in_Selected_Fields_of_Healthcare  
46 https://towardsdatascience.com/quantile-regression-from-linear-models-to-trees-to-deep-
learning-af3738b527c3  
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This leaves the question of from which distribution we should synthesise new 
records. Clearly, this should not be the Family Resources Survey given this 
would be self-defeating. A data source more likely to produce success would 
be HMRC's Survey of Personal Incomes: a 1% (anonymised to meet disclosure 
rules) sample from HMRC's administrative tax records. The SPI does not 
suffer the same under-counting of incomes (in fact, its aggregates are the 
basis by which we know the FRS is inaccurate), and the inability of 
individuals to refuse to participate in the survey means that it is likely to be 
more representative of the population than the FRS. Therefore, since SPI 
records can reproduce SPI aggregates, SPI-like records sampled from the SPI 
in FRS format should be able to move FRS aggregates in the direction of SPI 
aggregates when given enough weight. 
 
The structural form of the model to use is distinct from how it mechanically 
integrates with the rest of the survey enhancement pipeline. The exact 
method we use is set out in the following steps: 
 

1. Identify common variables between the SPI and the FRS. 
2. Partition these into two sets: the predictor set, and the imputation set. 
3. Train a QRF model to predict imputation set variables given the 

predictor set variables. 
4. Duplicate each household record once, assigning zero weight to the 

copy. 
5. For each household record in the FRS, use the QRF model to predict the 

imputation set variables. 
6. Override the imputation set variables in the copied household record 

with the predicted values. 
 
Note that it is important that we adjust for the different sampling frames of 
the FRS and SPI: the SPI only includes individuals who are likely to pay 
Income Tax, whereas the FRS includes people with earnings too low to be 
taxed. We can adjust for this by adding in an approximation for the missing 
(approximately ten million individuals) population to the SPI as a new record 
with zero income- if we did not do this, the bottom of the income distribution 
in the SPI might be above zero, which is not true of the actual income 
distribution. 
 
At the end of this process, the new FRS dataset is identical to the original 
dataset because the new additions are zero-weighted. However, the optimiser 
now has a far expanded parameter space to work with and can therefore 
(potentially) make more progress towards the target. 
 
However, even if we can accurately capture the relationship between 
variables in a more accurate dataset, this doesn't guarantee that applying the 
model to the FRS will produce the same record distributions as in the SPI, 
because the SPI and FRS have different sampling frames: imputing income 
variables might correct for the FRS undercounting high incomes among 
people who would have high incomes if HMRC were asking, but the FRS also 
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will have less of these people than would exist in the SPI (due to sampling 
bias). 
 
Another pitfall of the imputation method is that it might not produce the 
most efficiently loss-potential-reducing records (from the perspective of the 
space they take up) or might even fail to produce the specific records that 
exist but not in either survey. For example, many of the individuals with the 
highest incomes will not appear even in the SPI. How can we ensure these 
records are created? One naive approach would be to simply craft them by 
hand, but this is both not scalable, and might introduce inaccuracy if the 
hand-made records have some unseen internal contradiction that would 
mean they cannot exist in real life. Instead, we can preserve the strength of 
our QRF models at capturing relationships between variables, and just adjust 
the distribution they predict. 
 
QRF regressors use the average of the results of a tree set as their outputs. The 
outputs from each tree incorporate all the learned information about the 
output variables conditional on the input variables, making it the optimal 
interception point to modify the model outputs without sacrificing the 
model's learned relationships. We can from here change the output from an 
average over all trees to a given percentile of the tree results. Since 
heterogeneity is still important, this percentile (per household observation) 
can be sampled randomly from a distribution (evenly and centred at 50% by 
default). Parametrising this distribution as a Beta distribution allows us to 
control its skew by a set parameter.47 Adjusting this skew parameter now 
enables us to adjust the distribution of predicted values upwards or 
downwards as needed. 
 
Multivariate prediction might need to make use of separate distribution 
parameters for individual variables (for example, if dividend income is more 
likely to be under-represented by sampling bias than employment income). 
To allow for this while still retaining consistency between predicted variables, 
we can train individual variable predictive models on the sequential predictor 
variables. For example, if we are to predict employment income and dividend 
income from age, we would train one model predicting employment income 
given age, and another predicting dividend income given age and (previously 
predicted) employment income. This is a straightforward extension of the 
univariate case and can be implemented in the same way. 
 

Data lag 
 
The existence of data lag, as identified by Burkhauser et al in the SPI 
adjustment, in which a household survey data belongs to a previous year 
(often 2-3 years before the current), presents a problem for its accuracy in 
many household surveys and this project. If we have a survey with taxes and 
benefits from 2019, are optimising weights to fit statistics from 2022, the 

 
47 The Beta distribution is parametrised by two parameters, but it is trivial to express this as 
one. 
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optimiser might struggle to perform well (because we are essentially asking it 
to sample a realistic set of 2022-like households as best it can from a set of 
2019-like households). This problem is made worse the more tax and benefit 
policy changes between the survey year and the target year (and there have 
been substantial changes in tax-benefit policy, particularly over the 
pandemic years). 
 
To fix this, we can use a microsimulation tax-benefit model to correct policy-
influenced data in the survey. Such a model is a predictor of a set of tax and 
benefit-related variables (for example, Income Tax, Universal Credit, etc.) 
from a set of input variables (e.g., employment incomes, household structure, 
etc.). Therefore, we can apply this process to each household in the survey 
data and correct the relevant variables with those simulated by the 
microsimulation model, according to 2022 policy. 
 
There are multiple microsimulation models capable of this for UK policy, but 
for this validation experiment we use the open-source model PolicyEngine-
UK48 which is therefore used in this project. 
 
The FRS has a sample size of around 20,000 households. This can reasonably 
be expected to be enough for the optimiser to be able to obtain good 
performance, but there are specific reasons why it might not. The largest 
likely problem is Universal Credit (UC), the UK's central means-tested benefit. 
Universal Credit is currently being phased-in across the UK, as a replacement 
for six previous l̀egacy' benefits, the bulk of which happened between 2019 
and 2022. This means that the 2019-20 FRS has a significantly lower share of 
households claiming Universal Credit (but instead claiming legacy benefits) 
than would be realistic for 2022. The problem becomes clear if we consider 
the case of optimising weights to a year in which Universal Credit is fully 
rolled out: all the 2019 households with legacy benefits would be essentially 
worthless, because they would have to be zero-rated to not produce 
erroneous aggregates. 
 
This issue can't fully be solved by data ageing: since there is still some mix of 
Universal Credit and legacy benefits, the microsimulation model must decide 
which to simulate based on which benefit the households report already 
receiving. We could in theory override the households' UC-legacy status to 
match the rollout percentage, but this might introduce inaccuracy in the 
household records. 
 
Instead, a cleaner solution is simply to pool multiple years of the survey 
(before data ageing), to increase robustness against this issue of small sample 
sizes. For this project, we can combine the 2018-19, 2019-20 and 2020-2149 
datasets (with only the 2019-20 dataset given its initial weights and the others 
zero). 

 
48 https://github.com/policyengine/policyengine-uk  
49 This data release exists, but we do not use it in the default case due to concerns about 
reliability given lower participation and telephone interviewing (due to the pandemic). Using 
it here, only given weight at the whim of the optimiser avoids this issue. 
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Overall method 
 
The final, combined pipeline is as follows: 
 

1.  Combine the three consecutive FRS years into a single dataset. 
2.  Duplicate the dataset with zero weights in the new copy records. 
3.  Train the QRF models on income data from the SPI. 
4.  Solve for the distribution parameters for each variable such that SPI 

aggregates are reproduced in the model's weighted FRS predictions. 
5.  Impute on the FRS and replace-impute income variables from the SPI 

in the second half of households.50 
6.  Step through the gradient descent algorithm to minimise survey loss 

with respect to the household weights of the resultant dataset. 
7.  Measure the relative change in survey loss from the original dataset. 

 
To measure the success of the process, we can record the loss value from the 
2019-20 FRS and compare against the loss for the optimised-pooled-imputed 
FRS, as well as any alternate versions of the FRS for comparison.  
 
The implementation51 for this pipeline is in Python, using the PyTorch library 
for the gradient descent routine and the Scikit-learn library for the synthetic 
data generation. For the gradient descent optimisation, I trained the weights 
for 256 epochs with a learning rate of 1 (given the weights are un-normalised 
by design, and in the order of 1,000). QRF models were trained with 100 trees 
and a maximum depth of 10. For training, I used the default Google Colab 
environment for reproducibility. 

Results 
 
The implementation of the survey enhancement routine is publicly available 
as a Python package (survey-enhance), and with public documentation.52 This 
package contains the main survey enhancement routines for reweighting and 
synthetic data generation and includes an example application in the UK 
context. 
 

Comparison against other methods 
 
To validate the performance of the pipeline (and its components), we need a 
unified metric for survey accuracy (a mapping of household surveys to real-
valued-space). For this, we can use the original loss definition described in 

 
50 At this point in the process, the resultant dataset contains six version of the FRS, and only 
the second (the 2019-20 FRS) has nonzero weights. 
51 Full model code, documentation and results is available at 
https://github.com/policyengine/survey-enhance  
52 Documentation available at https://nikhilwoodruff.github.io/survey-enhance. The package 
is available on the widely used Python package repository pypi.org. 
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the method (for overfitting concerns, see the experiments in REF that validate 
against this). We can then compare the loss values for each of the following 
datasets: 
 

•  Original 2019-20 FRS: the original dataset, with no changes. 
• Percentile-matched (all) FRS: the FRS with percentiles for all major 

income sources matched to the SPI. 
•  Percentile-matched (dividends only) FRS: the FRS with percentiles for 

dividend income only matched to the SPI. 
•  Percentile-matched (pensioner split) 2019-20 FRS: the FRS with 

percentiles for all major income sources matched to the SPI, but with 
separate distributions for pensioners and non-pensioners. 

•  Gradient descent-based reweighting: the FRS with weights optimised 
using the gradient descent algorithm. 

•  Imputed and reweighted FRS: the FRS with zero-weighted, FRS-
structured, SPI-sampled synthetic records added, and weights 
optimised using the gradient descent algorithm. 

 
The same hyperparameters for all machine-learning-based models were used 
between training runs in these comparisons. The table below shows the 
change in total normalised survey loss under each survey improvement 
method. 
 
Table 1: loss reductions under different survey improvement methods on the FRS 

 
 
The results show that the gradient descent-based reweighting method is the 
second most effective, reducing the loss by 59%. The imputation and 
reweighting method is the most effective, reducing the loss by 88%.  
 
The percentile matching methods are less effective, with the pensioner split 
method being the most effective, reducing the loss by less than 1%. The 
percentile matching method with all income sources is the least effective, 
reducing the loss by 3.92%. The percentile matching method with dividends 

Adjustment Loss change 

Percentile matching (all) +3.92% 

Percentile matching (pensioner split) +0.90% 

None 0.00% 

Percentile matching (dividends only) -0.13% 

Gradient descent-based reweighting -59.13% 

SPI RF imputation and reweighting -88.00% 
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only is the least effective, reducing the loss by 0.13%. There is selection bias 
with the choice of parameters for the percentile matching methods: I tried 
many different configurations of the algorithm, in order to find at least one 
example which reduced survey loss. The likely cause of the inaccuracy is that 
employment income aggregate is already very close to the SPI aggregate, and 
so if the method only changes the percentiles in the top 5 percent, then it will 
overestimate the aggregate by doing so (when instead, we should be reducing 
the percentiles in the bottom 95 percent to compensate). This issue is absent 
when only adjusting dividend income because dividends are so poorly 
captured in the baseline FRS (under-reported by 80%). 
 

Validation on specific metrics 
 
Although a single real-valued loss result is useful for ranking survey 
improvement methods, it doesn't tell us much about the accuracy of the 
survey across all the different targets involved in the loss function. Figure 4 
shows the distribution parameters (the 10th, 50th and 90th percentiles) of the 
relative errors against the (unweighted) set of statistical targets involved in the 
loss function, by training epoch. This shows that the optimisation process 
was broadly effective at reducing errors jointly across a diverse set of targets 
(and does not simply rely on hitting a particularly high-weighted target, like 
the employment income aggregate, at the expense of others). 
 

 
Figure 1: distribution of relative error rates by epoch 

 
Fitting the entire set of statistical targets is challenging because it includes 
targets that conflict with each other, as well as in harmony. For example, 
employment income and Income Tax aggregates are correlated (and therefore 
if the survey moving further towards accurately reproducing one likely moves 
towards the other as well), but high-income-specific Income Tax aggregates 
are in conflict with the population of London (if the algorithm tries to hit the 
high-income-specific Income Tax aggregate by increasing the weights of 
high-income taxpayers, who are usually resident in London, it might quickly 
find that it has severely overestimated the regional population). This is a 
possible explanation for which the error rates in Figure 4 are wave-like: the 
algorithm is in a constant state of trying to hit one target, but then finding 
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that it has hit another target instead, and then trying to hit the first target 
again, and so on.  
 

Reform analysis comparison 
 
Baseline-only inference (how well a microsimulation model can describe the 
current household sector) is important, but the primary purpose of 
microsimulation models is to estimate the impact of a hypothetical reform to 
policy rules. To validate not just the accuracy of the survey improvement 
method on the current baseline, but in reforms, we can measure how the 
optimised FRS compares to a source of t̀ruth' for reform impacts. For example, 
the Dividend Allowance is a tax relief that exempts the first £2,000 of dividend 
income from Income Tax. Table 2 compares microsimulation findings for the 
net cost of the tax relief53 using the original and enhanced FRS datasets 
against the estimates against HM Treasury's internal modelling (which uses 
the Survey of Personal Incomes, HMRC's administrative dataset). 
 
Table 2: comparison of reform impact estimates 

 
 
While there is no definite s̀ource of truth' for hypothetical reforms, the SPI 
dataset is as close as we can get. This indicates the strength of the enhanced 
FRS dataset: suggesting that on this reform, it has combined the budgetary 
accuracy of the SPI (which is incapable of household microsimulation) with 
the applicability of the FRS. 
 

General evaluation 
 
Measuring the resultant accuracy against the actual data and models used by 
the established research groups inside and outside government is largely 
impossible, because all but one of the groups who carry out research using 
microsimulation do not publish standard model outputs or any validation 
against external statistics (this includes modelling groups inside and outside 
government).54 Only one model publishes validation statistics: UKMOD, 
managed by ISER at the University of Essex. 

 
53 Defined as the difference in tax revenues compared to a scenario where it did not exist. 
54 The microsimulation models of note which cannot be used for comparison due to this are: 
the IFS' TAXBEN, t̀he IPPR model' at PERU, Manchester Metropolitan University, the DWP's 
PSM, HMRC's IGOTM.  

Source Estimate 

HM Treasury (internal) £720m 

Original FRS £411m 

Enhanced FRS £680m 
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UKMOD publishes a comprehensive set of statistics regularly, detailing how 
the model's tax-benefit aggregate statistics compare to external aggregates.55 
A comparison of these results against the equivalent outputs from 
PolicyEngine-UK with the data enhancement methodology in this project 
shows the optimised FRS in this project outperforming UKMOD. Most 
aggregates in UKMOD's validation set have a relative error in the region of 10 
to 30 percent against administrative truth; compared to 0 to 5 percent under 
the optimised datasets here. 
 
The optimisation process is constrained to non-negative weights, which is a 
reasonable assumption for a survey. However, experimentation with the 
optimisation process shows, as expected, that the optimiser can achieve a 
lower survey loss with this constraint removed. This raises an interesting and 
unorthodox question: do negative weights have a meaningful interpretation 
in the context of a survey? We might conclude that the intuitive meaning of 
the survey weight is not that a household record represents a negative 
number of households (which does not seem reasonable), but instead that the 
optimiser is trying to exploit the negativity to construct a new household 
record: from the linear combination of the negative-weight household and 
some other positive-weighted household in the survey. Without the ability to 
alter individual household records, reweighting is the only way it can achieve 
this. Future research exploring this idea, as well as testing if this explanation 
can be intuitively demonstrated in the data (for example, does this manifest 
as a simple household acting as a 'missing half', or is the actual function less 
intuitive?) could substantially increase the performance of the optimised 
weights and the survey as a whole. 
 
Other methods exist for generating synthetic data. For example, generative 
adversarial networks (GANs) have been shown to be highly effective at 
capturing and reproducing patterns arising from complex compositions of 
low-level data features. However, this approach (in this case, using 
conditional GANs) would likely have been less effective, for two reasons. 
Primarily, QRF models are inherently more robust to particular distributional 
features such as b̀unching' (recall the capital gains example: tax policies often 
cause spikes at exact values of income amounts). Neural networks might 
approximate this, but with less precision than a decision tree. Secondly, 
modifiability: the QRF model architecture enables the distribution parameter 
adjustment t̀rick', but no such ability exists for GANs without significant 
modification, or retraining (which is costly). 
 
Explainability is also key for microsimulation modelling. Given that outputs 
from the model are the result of aggregating tens of thousands of individual 
household outcomes, being able to interrogate characteristics of individual 
household records, and understand why they are a given value, is essential for 
the model's results (which can often be counterintuitive) to retain legitimacy. 
With the QRF model distribution output, it is relatively straightforward to 

 
55 https://www.iser.essex.ac.uk/research/publications/working-papers/cempa/cempa2-22  
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evaluate particular synthetic households. Figure 6 shows an interactive 
application developed for this purpose in this project, which allows the user 
to select input values for a given household and simulate the QRF model's 
distribution outputs for the relevant income variables (reflecting the SPI 
income imputation stage of the enhancement process). 
 
 

 
Figure 2: the synthetic data explorer 

 
 
When directly targeting a set of statistical targets, there is a risk of overfitting 
to just those targets. For example, if we only fit the weights to tax statistics 
without also targeting demographic totals, we might find that the household 
population is significantly overestimated. This specific issue is solved by 
adding demographic targets to the loss function, but there will always be out-
of-sample statistical targets: cross-tabulations by ethnicity, regional program 
statistics, etc. To test the severity of this issue, we can exclude a random 
percentage of the targets from the training loss function, and test how 
performance on those targets differs from the training targets. Cross-
validation can also increase the robustness of this analysis, by rotating the 
selection used for validation to ensure no individual sample is under-
represented in the validation set. Table 3 shows the results of this analysis, 
using 5-fold cross-validation. 
 
Table 3: cross-validation results 

Statistical target set Loss relative to original FRS 

Training targets -85% 

Validation targets -42% 
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This is also significantly better performance than the original FRS, which 
overfits to demographic targets by design: FRS weights being optimised to hit 
population totals alone causes them to underfit financial targets in the way 
that they do. 
 
One finding when carrying out this research was of the importance of not 
segmenting co-dependent targets between training and validation. For 
example, it was found that if the population targets for all regions except one 
(e.g. the South West) were in the training set and the remaining one was in the 
validation set, then the model was able to effectively exploit this by treating 
the population of the South West as a s̀pare household region' whose 
population did not matter and whose inhabitants could be used to plug any 
gaps in other targets as required. 
 

Conclusion 
 
The methods outlined in this project are independent of country profile or 
policy, requiring only a survey of reasonable accuracy and a set of target 
statistics of higher accuracy than the survey. The evaluation focussed on the 
UK, but the very same approaches could be applied to e.g., the United States 
or other jurisdictions, which often suffer from similar issues around under-
reporting and sampling bias. 
 
While the code to reproduce this enhanced FRS is publicly available, the 
actual dataset is limited to UK academic researchers and non-profit 
organisations due to UK data licensing conditions. This limits the value that it 
can provide, increasing barriers to entry for potential new research and 
application. Countries like the United States do not impose this limitation (for 
example, the Current Population Survey, an analogue to the UK's FRS, is 
publicly available). This project used synthetic data techniques to extend, 
rather than generate from scratch: future research investigating the possibility 
to create a new, calibrated FRS dataset with all the properties of the enhanced 
FRS would be a highly valuable contribution to the field, by enabling the 
resultant dataset to be made completely public. 
 
The results of the experiments on the FRS suggest improvements can be made 
to the accuracy of tax-benefit microsimulation modelling by adjusting survey 
weights and values over the original outputs of the statistical agencies that 
manage them, at least in the context of the UK’s DWP and ONS. Whether this 
logic extends to the data produced in other countries might require similar 
experiments on the relevant survey microdata. However, given the findings of 
the wide literature on household survey inaccuracy that the same issues of 
measurement and sampling bias manifest across countries in a similar way, it 
seems plausible that the approach in this paper could show similar results. 

Combined targets -76% 
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Generating synthetic household data for this project is a complex task, 
primarily because the FRS is a relational dataset: households can have 
variable numbers of members, and members have unique relationships with 
each other. Graph neural networks might be a promising approach to this 
problem, as they are able to model complex relationships between data 
points. However, the current state of the art in this area has not yet reached 
the same level of maturity as more established methods like regular ANNs, 
GANs, or QRFs as in this implementation. 
 
The positive results achieved in the UK context suggest a strong improvement 
in the accuracy of the FRS, and by extension the microsimulation model that 
uses the data. By combining the b̀est of both worlds̀ in granularity (from the 
FRS) and accuracy (from the SPI and other data sources), the pipeline 
effectively enables much more accurate (and consistent) microsimulation 
modelling of the UK tax-benefit system. The FRS is acknowledged to have 
weaknesses in reproducing administrative data properties by its own 
departmental research- improving the accuracy of microsimulation modelling 
brings potentially sizeable improvements in the abilities of policymakers to 
understand the likely impacts of reforms to tax-benefit policy, and ultimately 
improve the effectiveness of such reforms in achieving their stated aims. 
 
This project benefited from discussions and presentations made to other 
industry stakeholders across government, non-profit and for-profit sectors. I 
presented the methodology and its applications to the HM Treasury internal 
distributional analysis team, who provided highly useful feedback and shed 
light on possible future applications. Other organisations and individuals also 
provided useful feedback and ideas for applications outside the scope of this 
project: for example, how using higher quality microdata for the QRF model 
imputations might affect the resultant optimised survey data quality. 

Acknowledgements 
 
The authors would like to thank: Nikhil Woodruff’s supervisor at the 
University of Durham, Professor Iain Stewart, for his guidance and support 
throughout this project; the many individuals and organisations who 
provided feedback and thoughts on the methodology and ideas behind it, 
including the HM Treasury distributional analysis team; the Joseph Rowntree 
Foundation modelling team; Matteo Richiardi at ISER and the IPPR model 
maintainers. 
 

Appendix: Quantile regression forest validation 
 
To validate the use of QRFs for this data enhancement procedure and 
determine whether this method is inferior to matching, we benchmark the 
QRF model against matching directly in a prediction exercise. Ghenis’ 
findings reproduce well in this new experiment with the Survey of Personal 
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Incomes: QRF models show much lower loss on SPI holdout sets than 
matching.56 Figure 1 shows the results of an experiment, which trained both 
models to predict employment income samples on a holdout set of tax data 
given age, gender and region and then measured total quantile loss over ten 
quantiles. 
 

 
Figure 3: quantile loss on models trained to predict SPI respondent 
characteristics. 
Figure 2 shows more validation for this conclusion: even within individual 
percentiles of the distribution, QRFs perform significantly better at predicting 
those percentiles than QRFs. 
 

 
56 Source code available (the SPI cannot be publicly shared but can be used if provided by the 
reviewer in CSV format) at 
https://gist.github.com/nikhilwoodruff/79e1171c7c3aad76a968fd1488dad975  
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Figure 4: quantile loss by method and quantile for matching against QRFs 
A key concern with using a method other than matching is that we might lose 
sensible covariation between data fields. By examining the correlation 
matrices in the predictor and imputation fields across matched, QRF imputed 
and truth datasets, we can measure the amount by which QRF imputations 
were better or worse in matching the true correlation coefficients compared 
to matching. Figure 3 shows this evaluation, finding that matching slightly 
outperforms QRF imputation in most variable pairs, but that the QRF 
imputations don’t perform significantly worse in preserving correlations. 
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Figure 5: QRF correlation improvement over matching 
 
However, correlation coefficients might not represent the full picture of 
intersections between any two variables. Figure 4 shows the results of fitting 
Lowess functions of employment income from self-employment income (an 
interaction for which Figure 3 shows a small deterioration in correlation 
coefficient accuracy). The fitted Lowess function of the QRF-imputed data 
remains close to the fit of the ground truth data- in many places, closer than 
the matching-derived predictions. 
 



Surveying the loss landscape 

 28 

 
Figure 6: Lowess functions of employment against self-employment by data 
source 
 
The results of these experiments validate the use of QRF models within this 
paper as the imputation model by which we can extend the moldability of the 
survey by demonstrating that the higher performance found by Ghenis 
carries forward to the data context that this paper is concerned with (UK 
taxpayers). 
 
  


